Quantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): Comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar)

TitleQuantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): Comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar)
Publication TypeJournal Article
Year of Publication2007
AuthorsMoghadam, HK, Poissant J, Fotherby H, Haidle L, Ferguson MM, Danzmann RG
JournalMolecular Genetics and Genomics
Volume277
Issue6
Pages647 - 661
KeywordsArctic charr, Comparative analysis, Genetic map, QTL, Salmonids, Tetraploid
Abstract

In salmonid fishes, life-history changes may often be coupled to early individual growth trajectories. We identified quantitative trait loci (QTL) for body weight (BW), condition factor (K) and age at sexual maturation (MT) in two full-sib families of Arctic charr (Salvelinus alpinus) to ascertain if QTL for MT were confounded with BW QTL intervals. Three significant QTL for BW, three QTL for MT and one significant QTL for K were identified. A BW QTL with major effect was localized to linkage group 8 (AC-8) and explained more than 34% of the phenotypic variation. Markers on AC-8 have previously been identified as being associated with variation in fork length and BW in this species. Similarly, a major QTL (PEV = 23%) with an influence on the female MT was localized to AC-23. Some of these regions are homologous to those in the genomes of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), where similar QTL effects have been detected. Our results also suggest the conservation of MT QTL on the homeologous linkage group pair AC-3/24 in Arctic charr. We further identified chromosomal regions that harbor QTL for multiple traits. In particular, markers on AC-4, -20 and -36 had detectable QTL for all traits studied. Significant MT QTL detected on AC-23, -24, and -27 were autonomous of any BW QTL regions, suggesting that the regulation of MT may be more independent of BW control within this species than in other species of salmonids. © 2007 Springer-Verlag.

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34248632804&partnerID=40&md5=c26a62279338d39950710abbd3ae08bd

User login