Carbon and chlorine isotope fractionation during microbial degradation of tetra-and trichloroethene

TitleCarbon and chlorine isotope fractionation during microbial degradation of tetra-and trichloroethene
Publication TypeJournal Article
Year of Publication2013
AuthorsWiegert, C, Mandalakis M, Knowles T, Polymenakou PN, Aeppli C, Macháčková J, Holmstrand H, Evershed RP, Pancost RD, Gustafsson O
JournalEnvironmental Science and Technology
Volume47
Issue12
Pages6449 - 6456
Abstract

Two-dimensional compound-specific isotope analysis (2D-CSIA), combining stable carbon and chlorine isotopes, holds potential for monitoring of natural attenuation of chlorinated ethenes (CEs) in contaminated soil and groundwater. However, interpretation of 2D-CSIA data sets is challenged by a shortage of experimental Cl isotope enrichment factors. Here, isotope enrichments factors for C and Cl (i.e., εC and εCl) were determined for biodegradation of tetrachloroethene (PCE) and trichloroethene (TCE) using microbial enrichment cultures from a heavily CE-contaminated aquifer. The obtained values were εC = -5.6 ± 0.7‰ (95% CI) and εCl = -2.0 ± 0.5‰ for PCE degradation and εC = -8.8 ± 0.2‰ and εCl = -3.5 ± 0.5‰ for TCE degradation. Combining the values for both εC and εCl yielded mechanism-diagnostic εCl/εC ratios of 0.35 ± 0.11 and 0.37 ± 0.11 for the degradation of PCE and TCE, respectively. Application of the obtained εC and εCl values to a previously investigated field site gave similar estimates for the fraction of degraded contaminant as in the previous study, but with a reduced uncertainty in assessment of the natural attenuation. Furthermore, 16S rRNA gene clone library analyses were performed on three samples from the PCE degradation experiments. A species closely related to Desulfitobacterium aromaticivorans UKTL dominated the reductive dechlorination process. This study contributes to the development of 2D-CSIA as a tool for evaluating remediation strategies of CEs at contaminated sites. © 2013 American Chemical Society.

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84879211180&partnerID=40&md5=2a06cc2d242a58604e62e78ff4084ca0

User login